Thursday, January 16, 2020

NETWORKING COURSE IN RAWALPINDI, ISLAMABAD, PAKISTAN. IPATS Govt Recognized +923035530865,3219606785

Networking Course IPATS Govt Recognized +923035530865,3219606785 
Networking course in Rawalpindi, Islamabad, Pakistan. CCNA Networking course in Rawalpindi, Islamabad, Pakistan. Computer Networking training course Rawalpindi, Islamabad, Pakistan. CCNA CISCO Netowrking course in Rawalpindi, Islamabad, Paksitan. Networking switches and router Training Course in Rawalpindi, Islamabad, Paksitan. CCNA Networking Training course in Rawalpindi, Islamabad, Pakistan. CCNA CISCO Networking training course in Rawalpindi, Islamabad, Pakistan. Networking training course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

Students from different cities can apply for Admission
Rawalpindi, Islamabad, Lahore, Karachi, Gilgit, Skardu, Ghangche, taxila, Shigar, Astore, Diamer, Ghizer, Kharmang, Gultari, Rondo, Hunza Nagar, Gupi, Azad Jammu and Kashmir, Muzaffarabad, Mirpur, Bhimber, Kotli, Rawlakot, Bagh, Bahawalpur, Bhakkar, Chakwal, Chiniot, Dera Ghazi Khan, Faisalabad, Gujranwala, Gujrat, Hafizabad, Jhang, Jhelum, Kasur, Khanewal, Khushab, Layyah, Lodharan, Mandi-Bahuddin, Mianwali, Multan, Muzaffargarh, Nankana Sahib, Narowal, Okara, Pakpattan, Rahim Yar Khan, Rajanpur, Sahiwal, Sargodha, Sheikhupura, Sialkot, Toba tek Singh, Vehari, Attock, Taxila, Wah Cantt, Rawalpindi, Balochistan, Khyber-Pakhtunkhwa, Punjab, Sindh, Gilgit Baltistan, Turbat, Sibi, Chaman, Lasbela, Zhob, Gwadar, Nasiraba, Jaffarabad, Hub, Dera Murad Jamali, Dera Allah Yar, Khyber-Pakhtunkhwa, Peshawar, Mardan, Abbottabad, Mingor, Kohat, Bannu, Swabi, Dera Ismail Khan, Charsadda, Nowshera, Mansehra, Hyderabad, Sukkur, Larkana, Nawabshah, Nanak wara, Mirpur Khas, Jacobabad, Shikarpur, Khairpur, Pakistan.

Networking
The TCP/IP Model is a specification for computer network protocls. TCP/IP defines a set of rules to enable computers to communicate over a network. When you hook up a computer using an Ethernet cable you are connecting that computer on the Physical layer. The TCP/IP Model is a specification for computer network protocls. TCP/IP defines a set of rules to enable computers to communicate over a network. It specifies how data should be formatted, addressed, shipped, routed and delivered to the right destination. There are 5 layers in the TCP/IP Model. The first layer is called the Physical Layer. This layer is responsible for encoding and transmitting data over network communications media. It operates with data in the form of bits which are sent from the Physical layer of the sending source and received at the Physical layer of a destination source. When you hook up a computer using an Ethernet cable you are connecting that computer on the Physical layer. This Physical layer is the lowest level of the TCP/IP Model. The next layer is the Data link layer. This layer is used to move packets from the network layer on two different hosts. The process of transmitting packets on a link layer can be controlled in the software device driver for the network card and on firmware. Different protcols are used for different types of networks. Broadband Internet access uses PPPoE as the protocol. For a local wired network, Ethernet is used. For local wireless network, IEEE 802.11 is used. The next layer is the Network layer. This layers gets data from a source network to the destination network. This generally involves routing the packets across a network of networks (also known as internetwork). This is where IP(Internet Protocol) comes in. IP performs the basic task of getting packets of data from source to destination. The next layer is the Transport layer. The transport layer’s responsibility is end-to-end message transfer. There are 2 categories of end-to-end message transmission: connection-oriented (TCP) or connectionless (UDP). The transport layer provides this service of connecting applications together through the use of ports. This layer offers reliability and error control. The fifth and final layer is the Application layer. This layer refers to higher-level protocols used by most applications for network communication. An example of application layer protocol is FTP (File Transfer Protocol). Data coded according to application layer protocols are then encapsulated into one or more transport layer protocols which in turn use lower layer protocols to effect actual data transfer.

CCNA Netowrking
Network computer devices that originate, route and terminate the data are called network nodes. Nodes can include hosts such as personal computers, phones, servers as well as networking hardware. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other. Computer networks differ in the transmission medium used to carry their signals, communications protocols to organize network traffic, the network's size, topology and organizational intent. Computer networks support an enormous number of applications and services such as access to the World Wide Web, digital video, digital audio, shared use of application and storage servers, printers, and fax machines, and use of email and instant messaging applications as well as many others. In most cases, application-specific communications protocols are layered (i.e. carried as payload) over other more general communications protocols. A network switch (also called switching hub, bridging hub, officially MAC bridge) is a computer networking device that connects devices together on a computer network by using packet switching to receive, process, and forward data to the destination device. Unlike less advanced network hubs, a network switch forwards data only to one or multiple devices that need to receive it, rather than broadcasting the same data out of each of its ports. A network switch is a multiport network bridge that uses hardware addresses to process and forward data at the data link layer (layer 2) of the OSI model. Some switches can also process data at the network layer (layer 3) by additionally incorporating routing functionality that most commonly uses IP addresses to perform packet forwarding; such switches are commonly known as layer-3 switches or multilayer switches. Switches for Ethernet are the most common form and the first Ethernet switch was introduced by Kalpana in 1990. Switches also exist for other types of networks including Fibre Channel, Asynchronous Transfer Mode, and InfiniBand.

Networking Training Course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785
CNNA Networking Course Content:
Introduction to computer networks
The lowest layers
Local Area Network
Wide Area Networking
Data Communication Technology
Internet Protocol suite :The network layer
Internet Protocol suite :The transport layer
Internet Protocol suite :Application layer protocols
Class
5 Days a Weeks Class Timing
Evening & Morning Shift

CCNA Networking Training Course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

QUALITY ASSURANCE COURSE IN RAWALPINDI, ISLAMABAD, PAKISTAN. IPATS Govt Recognized +923035530865,3219606785

Quality Assurance Course IPATS Govt Recognized +923035530865,3219606785

Quality Assurance course in Rawalpindi, Islamabad, Pakistan. Quality Assurance Diploma course in Rawalpindi, Islamabad, Pakistan. Quality Assurance Training course in Rawalpindi, Islamabad, Pakistan. QA Quality Assurance Diploma course in Rawalpindi, Islamabad, Pakistan. QMS Quality Management System course in Rawalpindi, Islamabad, Pakistan. Quality Assurance Training Course in Rawalpindi, Islamabad, Pakistan. QA, QC, Quality Control and Quality Assurance course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

Students from different cities can apply for Admission
Rawalpindi, Islamabad, Lahore, Karachi, Gilgit, Skardu, Ghangche, taxila, Shigar, Astore, Diamer, Ghizer, Kharmang, Gultari, Rondo, Hunza Nagar, Gupi, Azad Jammu and Kashmir, Muzaffarabad, Mirpur, Bhimber, Kotli, Rawlakot, Bagh, Bahawalpur, Bhakkar, Chakwal, Chiniot, Dera Ghazi Khan, Faisalabad, Gujranwala, Gujrat, Hafizabad, Jhang, Jhelum, Kasur, Khanewal, Khushab, Layyah, Lodharan, Mandi-Bahuddin, Mianwali, Multan, Muzaffargarh, Nankana Sahib, Narowal, Okara, Pakpattan, Rahim Yar Khan, Rajanpur, Sahiwal, Sargodha, Sheikhupura, Sialkot, Toba tek Singh, Vehari, Attock, Taxila, Wah Cantt, Rawalpindi, Balochistan, Khyber-Pakhtunkhwa, Punjab, Sindh, Gilgit Baltistan, Turbat, Sibi, Chaman, Lasbela, Zhob, Gwadar, Nasiraba, Jaffarabad, Hub, Dera Murad Jamali, Dera Allah Yar, Khyber-Pakhtunkhwa, Peshawar, Mardan, Abbottabad, Mingor, Kohat, Bannu, Swabi, Dera Ismail Khan, Charsadda, Nowshera, Mansehra, Hyderabad, Sukkur, Larkana, Nawabshah, Nanak wara, Mirpur Khas, Jacobabad, Shikarpur, Khairpur, Pakistan.

Quality Assurance
Quality assurance (QA) is a way of preventing mistakes or defects in manufactured products and avoiding problems when delivering solutions or services to customers; which ISO 9000 defines as "part of quality management focused on providing confidence that quality requirements will be fulfilled". This defect prevention in quality assurance differs subtly from defect detection and rejection in quality control, and has been referred to as a shift left as it focuses on quality earlier in the process. The terms "quality assurance" and "quality control" are often used interchangeably to refer to ways of ensuring the quality of a service or product. For instance, the term "assurance" is often used as follows: Implementation of inspection and structured testing as a measure of quality assurance in a television set software project at Philips Semiconductors is described. The term "control", however, is used to describe the fifth phase of the DMAIC model. DMAIC is a data-driven quality strategy used to improve processes. Quality assurance comprises administrative and procedural activities implemented in a quality system so that requirements and goals for a product, service or activity will be fulfilled. It is the systematic measurement, comparison with a standard, monitoring of processes and an associated feedback loop that confers error prevention. This can be contrasted with quality control, which is focused on process output. Two principles included in quality assurance are: "Fit for purpose" (the product should be suitable for the intended purpose); and "right first time" (mistakes should be eliminated). QA includes management of the quality of raw materials, assemblies, products and components, services related to production, and management, production and inspection processes. Suitable quality is determined by product users, clients or customers, not by society in general. It is not related to cost, and adjectives or descriptors such as "high" and "poor" are not applicable. For example, a low priced product may be viewed as having high quality because it is disposable, whereas another may be viewed as having poor quality because it is not disposable.

Quality Management
Quality management ensures that an organization, product or service is consistent. It has four main components: quality planning, quality assurance, quality control and quality improvement. Quality management is focused not only on product and service quality, but also on the means to achieve it. Quality management, therefore, uses quality assurance and control of processes as well as products to achieve more consistent quality. Quality management is a recent phenomenon but very important for an organization. Advanced civilizations that supported the arts and crafts allowed clients to choose goods meeting higher quality standards rather than normal goods. In societies where arts and crafts are the responsibility of master craftsmen or artists, these masters would lead their studios and train and supervise others. The importance of craftsmen diminished as mass production and repetitive work practices were instituted. The aim was to produce large numbers of the same goods.

Quality Assurance Approaches
Failure testing
A valuable process to perform on a whole consumer product is failure testing or stress testing. In mechanical terms this is the operation of a product until it fails, often under stresses such as increasing vibration, temperature, and humidity. This exposes many unanticipated weaknesses in a product, and the data is used to drive engineering and manufacturing process improvements. Often quite simple changes can dramatically improve product service, such as changing to mold-resistant paint or adding lock-washer placement to the training for new assembly personnel.

Statistical control
Statistical control is based on analyses of objective and subjective data. Many organizations use statistical process control as a tool in any quality improvement effort to track quality data. Any product can be statistically charted as long as they have a common cause variance or special cause variance to track. Walter Shewart of Bell Telephone Laboratories recognized that when a product is made, data can be taken from scrutinized areas of a sample lot of the part and statistical variances are then analyzed and charted. Control can then be implemented on the part in the form of rework or scrap, or control can be implemented on the process that made the part, ideally eliminating the defect before more parts can be made like it.

Total quality management
The quality of products is dependent upon that of the participating constituents, some of which are sustainable and effectively controlled while others are not. The process(es) which are managed with QA pertain to Total Quality Management. If the specification does not reflect the true quality requirements, the product's quality cannot be guaranteed. For instance, the parameters for a pressure vessel should cover not only the material and dimensions but operating, environmental, safety, reliability and maintainability requirements.

Models and standards
ISO 17025 is an international standard that specifies the general requirements for the competence to carry out tests and or calibrations. There are 15 management requirements and 10 technical requirements. These requirements outline what a laboratory must do to become accred. Management system refers to the organization's structure for managing its processes or activities that transform inputs of resources into a product or service which meets the organization's objectives, such as satisfying the customer's quality requirements, complying with regulations, or meeting environmental objectives. WHO has developed several tools and offers training courses for quality assurance in public health laboratories. The Capability Maturity Model Integration (CMMI) model is widely used to implement Process and Product Quality Assurance (PPQA) in an organization. The CMMI maturity levels can be divided into 5 steps, which a company can achieve by performing specific activities within the organization.

Quality Assurance Course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

Quality Assurance Course Content:
Introduction
TQM Principles
Statistical Process Control (SPC)
TQM Tools
Quality Systems
Class
5 Days a Weeks Class Timing
Evening & Morning Shift

Quality Assurance Course in Rawalpindi, Pakistan. IPATS Govt Recognized +923035530865,3219606785

Quantity Surveyor Course IPATS Govt Recognized +923035530865,3219606785

Quantity Surveyor course in Rawalpindi, Islamabad, Pakistan. Quantity Surveyor Diploma course in Rawalpindi, Islamabad, Pakistan. Quantity Surveyor Training course in Rawalpindi, Islamabad, Pakistan. Quantity surveyor Diploma in Rawalpindi, Islamabad, Pakistan. Quantity survey course in Rawalpindi, Islamabad, Islamabad. Quantity surveyor practical training course in Rawalpindi, Islamabad, Pakistan. Quantity Survey Training course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

Students from different cities can apply for Admission
Rawalpindi, Islamabad, Lahore, Karachi, Gilgit, Skardu, Ghangche, taxila, Shigar, Astore, Diamer, Ghizer, Kharmang, Gultari, Rondo, Hunza Nagar, Gupi, Azad Jammu and Kashmir, Muzaffarabad, Mirpur, Bhimber, Kotli, Rawlakot, Bagh, Bahawalpur, Bhakkar, Chakwal, Chiniot, Dera Ghazi Khan, Faisalabad, Gujranwala, Gujrat, Hafizabad, Jhang, Jhelum, Kasur, Khanewal, Khushab, Layyah, Lodharan, Mandi-Bahuddin, Mianwali, Multan, Muzaffargarh, Nankana Sahib, Narowal, Okara, Pakpattan, Rahim Yar Khan, Rajanpur, Sahiwal, Sargodha, Sheikhupura, Sialkot, Toba tek Singh, Vehari, Attock, Taxila, Wah Cantt, Rawalpindi, Balochistan, Khyber-Pakhtunkhwa, Punjab, Sindh, Gilgit Baltistan, Turbat, Sibi, Chaman, Lasbela, Zhob, Gwadar, Nasiraba, Jaffarabad, Hub, Dera Murad Jamali, Dera Allah Yar, Khyber-Pakhtunkhwa, Peshawar, Mardan, Abbottabad, Mingor, Kohat, Bannu, Swabi, Dera Ismail Khan, Charsadda, Nowshera, Mansehra, Hyderabad, Sukkur, Larkana, Nawabshah, Nanak wara, Mirpur Khas, Jacobabad, Shikarpur, Khairpur, Pakistan.

Quantity Surveyor
A person who calculates the amount of materials needed for building work, and how much they will cost. A Quantity Surveyor (QS) is a professional in the construction industry concerned with construction costs and contracts, with expertise in construction cost consulting and cost estimating. They are not to be confused with Land Surveyors or Land Survey Engineers. Construction is the process of constructing a building or infrastructure. Construction differs from manufacturing in that manufacturing typically involves mass production of similar items without a designated purchaser, while construction typically takes place on location for a known client. Construction as an industry comprises six to nine percent of the gross domestic product of developed countries. Construction starts with planning, design, and financing; and continues until the project is built and ready for use. Large-scale construction requires collaboration across multiple disciplines. An architect normally manages the job, and a construction manager, design engineer, construction engineer or project manager supervises it. For the successful execution of a project, effective planning is essential. Those involved with the design and execution of the infrastructure in question must consider zoning requirements, the environmental impact of the job, the successful scheduling, budgeting, construction-site safety, availability and transportation of building materials, logistics, inconvenience to the public caused by construction delays and bidding, etc. The largest construction projects are referred to as megaprojects.

Types of construction
In general, there are three sectors of construction: buildings, infrastructure and industrial. Building construction is usually further divided into residential and non-residential (commercial/institutional). Infrastructure is often called heavy/highway, heavy civil or heavy engineering. It includes large public works, dams, bridges, highways, water/wastewater and utility distribution. Industrial includes refineries, process chemical, power generation, mills and manufacturing plants. There are other ways to break the industry into sectors or markets. Engineering News-Record (ENR) is a trade magazine for the construction industry. Each year, ENR compiles and reports on data about the size of design and construction companies. They publish a list of the largest companies in the United States (Top-40) and also a list the largest global firms (Top-250, by amount of work they are doing outside their home country). In 2014, ENR compiled the data in nine market segments. It was divided as transportation, Quantity Surveyor, buildings, power, industrial, water, manufacturing, sewer/waste, telecom, hazardous waste plus a tenth category for other projects. In their reporting on the Top 400, they used data on transportation, sewer, hazardous waste and water to rank firms as heavy contractors. The Standard Industrial Classification and the newer North American Industry Classification System have a classification system for companies that perform or otherwise engage in construction. To recognize the differences of companies in this sector, it is divided into three subsectors: building construction, heavy and civil engineering construction, and specialty trade contractors. There are also categories for construction service firms (e.g., engineering, architecture) and construction managers (firms engaged in managing construction projects without assuming direct financial responsibility for completion of the construction project).

















Building construction
Building construction is the process of adding structure to real property or construction of buildings. The majority of building construction jobs are small renovations, such as addition of a room, or renovation of a bathroom. Often, the owner of the property acts as laborer, paymaster, and design team for the entire project. Although building construction projects typically include various common elements, such as design, financial, estimating and legal considerations, many projects of varying sizes reach undesirable end results, such as structural collapse, cost overruns, and/or litigation. For this reason, those with experience in the field make detailed plans and maintain careful oversight during the project to ensure a positive outcome. Commercial building construction is procured privately or publicly utilizing various delivery methodologies, including cost estimating, hard bid, negotiated price, traditional, management contracting, construction management-at-risk, design & build and design-build bridging. Residential construction practices, technologies, and resources must conform to local building authority regulations and codes of practice. Materials readily available in the area generally dictate the construction materials used (e.g. brick versus stone, versus timber). Cost of construction on a per square meter (or per square foot) basis for houses can vary dramatically based on site conditions, local regulations, economies of scale (custom designed homes are often more expensive to build) and the availability of skilled tradespeople. As residential construction (as well as all other types of construction) can generate a lot of waste, careful planning again is needed here.

Quantity Surveyor Course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785
Quantity Surveyor Course Content:
Cost planning
Estimating
Contracts negotiation
Procurement advice
Preparing Bill of Quantities (BOQ) and Tender Document
Monitoring Budget
Preparation of Payment Application, certification and valuation of construction work
Assessment of variations
Dispute resolution
Preparing feasibility studies
Cost control
Value estimation
Advice on cost limits and budgets
Whole life cycle costing
Valuation for insurance purposes
Project management
Advice on contractual disputes
Preparation of final account
Class
5 Days a Weeks Class Timing
Evening & Morning Shift

Quantity Surveyor Diploma Course in Rawalpindi, Islamabad, Pakistan. IPATS Govt Recognized +923035530865,3219606785

No comments:

Post a Comment